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ABSTRACT We proposed a method of label-free segmentation of cell nuclei by exploiting a deep
learning (DL) framework. Over the years, fluorescent proteins and staining agents have been widely used
to identify cell nuclei. However, the use of exogenous agents inevitably prevents from long-term imaging
of live cells and rapid analysis and even interferes with intrinsic physiological conditions. Without any
agents, the proposedmethod was applied to label-free optical diffraction tomography (ODT) of human breast
cancer cells. A novel architecture with optimized training strategies was validated through cross-modality
and cross-laboratory experiments. The nucleus volumes from the DL-based label-free ODT segmentation
accurately agreed with those from fluorescent-based. Furthermore, the 4D cell nucleus segmentation was
successfully performed for the time-lapse ODT images. The proposed method would bring out broad and
immediate biomedical applications with our framework publicly available.

INDEX TERMS Cell nucleus segmentation, deep learning, label-free segmentation, optical diffraction
tomography, refractive index tomogram.

I. INTRODUCTION
The precise localization and segmentation of cell nucleus are
crucial to understand the cell physiology in cell biology and
to diagnose a malignant tumor in histopathology. In addition
to its primary biological function as the carrier of genetic
information, the characteristics of cell nuclei play a variety
of roles in medicine. For instance, the volume ratio of the
nucleus to the cytoplasm is a well-established indicator of cell
malignancy [1]. Light scattering spectroscopy techniques for
non-invasive cancer diagnosis are known to be closely related
to this nucleus-based diagnostic marker [2], [3]. Furthermore,
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targeted dose enhancement of cell nuclei by gold nanoparti-
cles has been shown to improve the therapeutic efficiency
in radiotherapy of tumors [4]. However, despite these far-
reaching implications, nucleus segmentation of live unlabeled
cells has not been adequately addressed yet. Conventional
approaches for cell identification and segmentation utilized
exogenous agents such as fluorescence proteins or dyes to
specifically label nucleus structures. However, these meth-
ods inevitably prevent long-term live cell imaging or rapid
analysis.

Recently, various quantitative phase imaging (QPI) tech-
niques have been developed and utilized for label-free imag-
ing of live cells [5]. Optical diffraction tomography (ODT)
is one of the 3D QPI techniques, which reconstructs the 3D
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FIGURE 1. The overall scheme of OS-Net. (a) Schematic diagram representing the principle of 3D ODT. (b) 2D sections of a measured 3D tomogram.
(c) 3D rendering of the tomogram. (d) Training of OS-Net using expert-annotated 2D RI images. (e) 3D cell nucleus segmentation using the
trained OSNet.

refractive index (RI) distribution of a sample from multi-
ple 2D holographic images measured at various illumination
angles [6]–[8]. Due to its label-free and quantitative imaging
capability, ODT has been utilized in various topics of studies
including microalgae [9], hematology [10], infectious dis-
eases [11], and yeast study [12]. In addition, RI is an intrinsic
property of materials governing light-matter interaction (i.e.,
scattering potential) and its reconstructed tomogram provides
abundant morphological information about cells [13]. How-
ever, the determination of the boundary of certain subcellu-
lar organelles (especially nucleus) based on RI is often an
ill-posed inverse problem.

Why is it difficult to segment the cell nucleus in ODT?
As shown in Fig. 1, the nuclei of eukaryotic cells in the RI
tomograms measured using ODT can be readily recognized
by trained biologists, at least in two dimensions (2D). How-
ever, automating this process toward 3D (three-dimensional)
high-throughput or time-lapse 3D (i.e., 4D) is not straightfor-
ward and generally challenging due to the following reasons:
(i) There are significant cell type dependence, cell cycle
dependence, and even cell-to-cell variations in the nuclear
RI threshold; (ii) overlapped or similar RI ranges of vari-
ous intracellular structures further complicate the problem
[13]. Previously proposed algorithms for ODT-based seg-
mentation of the nucleus, or subcellular organelles typically

have been the case-by-case design of image processing steps,
such as thresholding, filtering, and various transforms [14].
This rule-based approaches are laborious and require signif-
icant domain knowledge and assumptions. In short, this task
is easy-to-human but difficult-to-machine, and thus, would
benefit from learning-based approaches instead of explicit
design [15].

Here, we proposed a deep learning framework for label-
free segmentation of cell nuclei in ODT. While determin-
ing a region of certain organelles (here, nucleus) or their
chemical identity using RI in a pointwise manner is chal-
lenging, we hypothesized that certain patterns in the spatial
distribution of RI might facilitate the chemical identifica-
tion [15]–[21]. We implemented this strategy through end-
to-end training of convolutional neural networks (CNN) that
detect local and global spatial correlations. We performed
extensively comparative experiments exploring a variety of
network architectures and training strategies in terms of vari-
ous evaluation metrics. Then we rigorously tested the trained
networks via cross-modality and cross-laboratory validation.
To our knowledge, the present work, named OS-Net (ODT-
based Segmentation Network), was the first deep learning
approach to biomedical applications of ODT.

The rest part of the paper is organized as follows. Section II
provides the details of the overall scheme of theOS-NET, data
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preparation process, elaborate description of the OS-NET
architecture, the network training strategy and the evaluation
of the trained network. Section III discusses the experimental
results and Section IV gives conclusion and the contribution
of this work.

II. MATERIALS AND METHODS
A. THE OVERALL SCHEME OF OS-NET
Fig. 1 illustrates the overall scheme of the proposed deep-
learning-based label-free cell nucleus segmentation in ODT.
ODT provides 3DRI tomograms of eukaryotic cells, in which
the nucleus can be visualized (Figs. 1a-c). In order to emulate
trained biologists who can readily recognize nuclear regions,
first, we built an expert-annotated training dataset with the
x-y cross-sectional images of the 3D tomograms. The anno-
tated dataset was utilized for training OS-Net in a supervised
manner (Fig. 1d). Once trained, OS-Net can automatically
infer 3D nuclear regions of previously unseen cells through
section-wise segmentation (Fig. 1e).

Note that we harnessed four-fold cross-validation of the
dataset in order to compare the performance of different
architectures and training strategies. Then, the trained 2D
segmentation capability of OS-Net was rigorously eval-
uated by cross-modality and cross-laboratory validations
based on simultaneous ODT and 3D fluorescence imag-
ing. Finally, we demonstrated the 4D cell nucleus segmen-
tation by frame-wise 3D segmentation of time-lapse ODT
data. A detailed description of each step of OS-Net is
presented below.

B. OPTICAL DIFFRACTION TOMOGRAPHY
ODT is essentially an inverse imaging problem of the
Helmholtz equation that governs light propagation in matter.
In the weak scattering regime, first-order scattering can be
assumed, and the 3D RI tomogram of a sample is recon-
structed from multiple 2D optical field images acquired with
various illumination angles (Fig. 1a). In this study, a commer-
cial ODT system (HT-2H; Tomocube Inc., Republic of Korea)
was used, which also enables 3D fluorescence imaging. This
system employs the digital mirror device (DMD) to control
the illumination angle of a laser beam impinging onto a
sample [22]. The voxel size of the tomograms obtained by this
systemwas 0.098× 0.098× 0.195µm3 which was finer than
its default optical resolution (0.110 × 0.110 × 0.160 µm3).
For cross-laboratory validation, we used a separate ODTwith
the same specification, which was installed at a different
institution.

C. SAMPLE PREPARATION AND IMAGING PROTOCOLS
For the acquisition of training and validation data, human
breast cancer cells (MDA-MB-231, Korean Cell Line
Bank) were cultured in Roswell Park Memorial Institute
1640 medium (RPMI-1640; Welgene, Republic of Korea),
supplemented with 10% fetal bovine serum (FBS; CellSera,
Australia) and 1% Penicillin-Streptomycin (Welgene,

Republic of Korea) at 37◦C in a humidified 5% CO2 atmo-
sphere for 24 hours. The cells were fixed with 4%
paraformaldehyde (PFP; Biosesang Inc., Republic of Korea)
treatment for less than 10 minutes and then, their 3D RI
tomograms were obtained using ODT.

For the cross-modality validation, we implemented the
same cell culture and fixation protocols, and stained the
cells with 4′ ,6-diamidino-2-phenylindole (DAPI; 1 µg/mL;
Sigma Aldrich, MO) for 3 minutes. DAPI is a DNA-specific
fluorescent probe that strongly binds to adenine-thymine rich
regions of the double-stranded DNA [23]. For these cells,
simultaneous ODT and 3D fluorescence imaging (z-stacked
epi-fluorescence microscopy combined with 3D deconvolu-
tion) were performed.

For cross-laboratory validation, the same cell line
was prepared with slightly different protocols. The cells
were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM; High Glucose, Pyruvate; Gibco, Thermo Fisher
Scientific, MA), supplemented with 10% FBS and 1%
Penicillin-Streptomycin at 37 ◦C in a humidified 10%
CO2 atmosphere. Then, the cells were stained with the
DNA-staining fluorescent dye Hoechst 33432 (0.1 µg/mL;
Thermo Fisher Scientific, MA) and washed with fresh growth
medium prior to ODT and fluorescence imaging. Note that no
fixation was performed in this case.

For the time-lapse imaging, we prepared unlabeled live
cells following the former preparation protocol only with-
out fixation process. The ODT measurement of the live
cells, maintained in a stable imaging chamber (37◦ and 5%;
TomoChamber; Tomocube Inc., Republic of Korea), were
performed every 10 minutes for a total of 1 hour.

D. DATASET PREPARATION
Tomographic reconstruction was done using a commercial
software (TomoStudio, Tomocube Inc., Republic of Korea).
Then, image processing was performed with the custom
codes written in MATLAB (R2018a; MathWorks, MA).
First, the 3D RI tomograms were decomposed into multiple
2D z-sections. Then, the sections were resized into 448 ×
448 pixels. For the training and validation sets, we mea-
sured 3D RI tomograms of 50 cells including 934 2D RI
cross-sections of the nucleus. For these RI images, we gen-
erated ground truth masks of the nucleus through manual
binary annotation cross-confirmed by 3 trained biologists
(see Fig. 1d). For four-fold cross-validation, the labeled
dataset was divided into four equally-sized subsamples.
Among the four subsamples, three of them were used as
training set while the single remaining subsamplewas utilized
as a validation set to evaluate the model. This validation
process was repeated four times using each subsample as
the validation set one after the other. Note that the 2D RI
images from each cell were put in a single subsample to avoid
overfitting.

For cross-modality and cross-laboratory validation, the
nuclear masks were directly obtained by thresholding the
fluorescence images that were simultaneously obtained
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FIGURE 2. The architecture of OS-Net.

with ODT. The cross-modality validation data consisted
of 122 2D RI sections and corresponding masks from
20 cells. The cross-laboratory validation data was composed
of 181 sections and masks from 16 cells.

E. ARCHITECTURE OF OS-NET
Our proposed model, OS-Net has distinctive components
such as GCN layers and SSC based on the encoder-decoder
structure of U-Net [24]. Fig. 2 illustrates the overall archi-
tecture of OS-Net. First, OS-Net is a network that generates
2D cell nucleus segmentation map (448 × 448) by receiving
2D RI images (448 × 448) as input. It is divided into the
feature extraction stage (encoder part) and the spatial reso-
lution recovery stage (decoder part). There are a total of four
Down modules in the former stage and four Up modules in
the latter stage. OS-Net has four-times-reduced number of
feature maps from 16 to 256 (Fig. 2, blue numbers above the
feature maps), compared to original U-Net containing 64 to
1024 feature maps in each stage.

One Down module has a Conv (convolution) Block con-
taining two sets of the convolutional layer with 3 × 3 filters
followed by batch normalization [25] and rectified linear
unit (ReLU) activation function [26]. After the Conv Block,
a GCN (global convolutional network) layer extracts different
features with other characteristics along the axes. (Details
of GCN layer are well described in 2.6.) The feature maps
after the GCN layer are combined with those before the
GCN layer, by being added together. This process is called
SSC (short skip connection), and is also important to convey
meaningful information to the next step. At the last part of
the Down module, there is a 2 × 2 max-pooling layer which
reduces the dimension of the feature maps to half (N×N to
N/2 × N/2).

After the four Down modules, there is a bridge part with
only one Conv Block, followed by the four Up modules.
In one of the Up modules, there is a Trans Conv (transposed
convolutional) layer with 4 × 4 filters to increase the dimen-
sion of feature maps (N ×N to 2N × 2N). The upsampled
feature maps are concatenated to those in the same level as
the Up module, which is the LSC (long skip connection) to
transfer spatial information across the level. Then, a Conv
Block follows LSC again. Finally, the final segmentation map
is released through a 1× 1 convolution and sigmoid function,
after 4 Up modules. The detailed OS-Net architecture and
dimension of the feature maps after each component are also
summarized in Table 1 (Conv Block: Convolutional Block
containing 2 sets of convolutional layers with 3× 3 filters fol-
lowed by batch normalization and rectified linear unit (ReLU)
activation function, GCN: Global Convolutional Network,
SSC: Short Skip Connection, Trans Conv: Transposed Con-
volutional layer, LSC: Long Skip Connection).

In addition, the entire code for OS-Net was imple-
mented using a deep learning open framework (PyTorch
0.4.1, Facebook, CA) and can be found in the given link
https://github.com/ljm861/OSNet/blob/master/osnet.py.

F. GLOBAL CONVOLUTION NETWORK
The main purpose of the GCN structure is to enlarge the
receptive field, because the segmentation task generally
requires a larger receptive field compared to the classification
task [27]. For more details on the structure of the GCN used
above for this purpose, two strategies were used, rather than
simply adding filters of size 7×7× 7 instead of 3× 3 (Fig. 3).

The first strategy is to decompose a 7×7 filter into 1×7 and
7 × 1, which has two advantages. First, splitting large filters
into small filters is advantageous from a learning point of
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TABLE 1. Architecture and dimension of feature maps of OS-Net.

FIGURE 3. Schematic diagram of the GCN layer.

view, because the smaller filter size results in more dis-
tinctive features rather than some dead or useless features
[28]. Secondly, from a memory point of view, the number
of parameters is reduced from 49 (7 × 7 filter) to 14 (1 ×
7 and 7× 1 filters), so there is a large benefit of reducing the
model complexity. Furthermore, it is also possible to extend
the receptive field to the width or height direction and extract
better features, rather than just simply see and only calculate
a 3 × 3 region.

The second strategy is that GCN operates on two parallel
paths. In the first path, feature maps are computed through 1
× 7 filters and then, 7 × 1 filters. In another path, feature
maps are computed conversely. By using two paths, GCN
can have similar advantage to Group convolutions [29]. After
that, the pixel-wise summation results of two feature maps
from each path become the final output of GCN. In doing so,

we are able to utilize more suitable features by combining the
features learned from the two paths.

G. TRAINING OF OS-NET
To train the deep-learning based models including OS-Net,
we implemented binary cross entropy (BCE) loss between
outputs from the model and corresponding nuclear masks
(Fig. 1d, yellow double arrow). The influence of each weight
in the model with respect to the loss function was com-
puted by the backpropagation method [30]. Then, weights
were updated by ADAM optimizer which is a first-order
gradient-based optimization method based on adaptive esti-
mates of lower-order moments [31]. For ADAM optimizer,
we set the learning rate to 0.0005, β1 to 0.5 and β2 to 0.999.
Furthermore, to reduce overfitting on the RI images in the
training set, we artificially augmented the training set by
using elastic deformation, flip and random cropmethods [32].
To apply the elastic deformation method, we set the alpha and
sigma as the following four pairs (1, 1), (5, 2), (1, 0.5), (1, 3).
For the flip method, we flipped the training set images
both horizontally and vertically. In case of the random
crop method, we enlarged the image to 1.2, 1.3 or
1.4 times and then, randomly cropped the enlarged image
into 448 × 448 pixels. Then, we used all the images in the
training set as well as the randomly selected 30% of the
images which were augmented randomly with these augmen-
tation parameters in every training epoch. The training batch
size was 32.

We utilized GPUs (Nvidia Tesla V100 32 GB) in Kakao
Brain Cloud for efficient training.When performing four-fold
cross-validation in the training stage, we allocated each fold
into a single GPU, and it took almost 4 hours to complete 300
epochs in one fold.

H. EVALUATION OF THE TRAINED OS-NET
In order to evaluate the trained models, we utilized the
datasets whichwere not used in the training stage. Tomeasure
how the model segmented the nucleus region well, we needed
to compare two binary maps, a segmentation map and its
corresponding nuclear mask. Every pixel in the generated
segmentation map can be classified correctly or incorrectly
to nuclear region or background. Thus, the generated map
may contain four cases: true positive (TP), false positive (FP),
true negative (TN) and false negative (FN) [33]. From these
values, Dice similarity coefficient (DICE), Jaccard similar-
ity coefficient (Jaccard), F0.5 and precision and recall are
defined as follows:

DICE =
2|X ∩ Y |
|X | +|Y |

=
2× TP

2× TP+ FP+ FN
(1)

Jaccard =
|X ∩ Y |
|X ∪ Y |

=
TP

TP+ FP+ FN
(2)

F0.5 score =
1.25×TP

1.25×TP+ FP+0.25×FN
(3)
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Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

Here, X and Y are the segmentation map from the segmen-
tation model and the corresponding nuclear mask, respec-
tively. In addition, area under curve (AUC) of precision and
recall (PR) curve was utilized to evaluate the overall perfor-
mance of a particular model. In the PR curve, the x-axis is the
precision and y-axis is the recall which is the same as the true
positive rate.

The overall evaluation process was divided into four parts:
design and analysis of OS-Net (four-fold cross-validation),
cross-modality validation between ODT and fluorescence
imaging in 2D and 3D, cross-laboratory validation and appli-
cation to 4D segmentation. First, we performed four-fold
cross-validation conducted with a different validation set for
each fold to compare the performance of numerous network
architectures and optimize the OS-Net structure. In order to
quantitatively evaluate the performance of various trained
models, we calculated DICE, Jaccard, F0.5 score and AUC
of PR curves between the segmentation maps obtained from
the trained model and the corresponding nuclear masks anno-
tated by experts (Table 2). To calculate these four metrics,
the segmentation map should be revised into a binary image,
since the nuclear mask is also a binary image only containing
0 and 1. Thus, after the 1 × 1 convolution and sigmoid func-
tion (the last part of OS-Net), we applied a threshold value
of 0.5, changed the map into the binary image and compared
it to the label. Then, we extensively compared the perfor-
mance of various architectures to demonstrate the superior
performance of our proposed model, OS-Net. We chose the
baseline model as Unet64, the original Unet [24]. In Unet64,
the number of feature maps increases from 64 to 1,024 as the
level increases. We also experimented with Unet16 which is
four times lighter than Unet64, to see if it would be possible to
reduce the number of parameters in the model with the same
performance. Then, we added the GCN layer and SSC to
Unet16 to improve the segmentation performance. In the next
step, various data augmentation (Aug) techniques described
above were applied in order to increase the performance and
reduce overfitting. Furthermore, we also compared the seg-
mentation results from FusionNet [34] which is an end-to-end
image segmentation model for electron microscopy images.
Note that we implemented FusionNet containing 16 to 256
feature maps like Unet16 and OS-Net for a fair comparison.

Next, we performed the cross-modality validation to con-
firm that the cell nucleus segmentation results from OS-Net,
which was trained only with expert-annotated 2D RI images,
would be comparable to the nuclear masks obtained from
fluorescence imaging. The cross-modality validation data
obtained with DAPI was utilized to evaluate the segmentation
performance of all the trained models that we already com-
pared in the four-fold cross-validation. Furthermore, to com-
pare the segmentation performance of learning-based method

with the conventional and rule-based method, we also devel-
oped an edge-based method, which has been traditionally
and widely used in cell image processing [35], [36]. (In the
edge-based method, the gradient of the image pixels was first
calculated using the 3 × 3 Sobel operator. Then, a dilated
gradient mask was created from the calculated gradient mask,
and the interior gap was filled. After that, the surrounding
diamond structuring elements were removed using a smooth-
ing kernel, and the segmentation map was generated.) Then,
the difference between the segmentation maps produced by
various trained models or edge-based method, and the corre-
sponding nuclear masks were quantified by calculating four
metrics, DICE, Jaccard, F0.5 and AUC of PR (Table 3).
We also compared the 2D segmentation results from OS-Net
and edge-based method with the nuclear masks in the image
domain (Fig. 5b). In addition, 3D cell nucleus segmentation
was performed via section-wise segmentation and the results
were rendered to 3D nuclear volume (Fig. 5c).

Furthermore, the cross-laboratory validation was also per-
formed by using the dataset taken from an external institute,
in order to confirm the robustness of OS-Net (Fig. 6). Finally,
we also applied OS-Net to time-lapse ODT data to demon-
strate the feasibility of 4D cell nucleus segmentation using
our proposed method (Fig. 7).

III. RESULTS AND DISCUSSION
A. DESIGN AND ANALYSIS OF OS-NET
The nucleus segmentation performance of various network
architectures (deep-learning based models) are summarized
in Table 2. In order to quantitatively compare and analyze
the results, DICE, Jaccard, F0.5 score and AUC of PR curves
between the generated segmentation maps and the corre-
sponding nuclear masks annotated by experts were calcu-
lated. Because the results were obtained through four-fold
cross-validation, the mean values and standard deviations
of the four folds’ results were calculated together. During
the evaluation process, 2D RI images in the validation set
were inserted into the trained model to infer the nucleus
segmentation maps, which took only 0.91 seconds to get one
segmentation map from its corresponding RI image.

In Table 2, the results on DICE, Jaccard, and F0.5 of
Unet64 were slightly improved than those from Unet16.
However, the threshold was fixed to a certain value (here,
0.5) when making the final segmentation map (after sigmoid
function) binary. Since DICE, Jaccard, and F0.5 were all
threshold dependent values, the threshold of 0.5 had worked
a little better for the output from Unet64 than Unet16. In the
case of AUC of PR, which was independent of the threshold
value and indicative of the overall performance of a particular
model, the result of Unet16 was slightly higher than that
of Unet64. When all four metrics were considered, the per-
formances of Unet64 and Unet16 were nearly comparable.
However, the most important point here is that the compres-
sion of the model for the cell nucleus segmentation task was
well performed, because the performance was nearly similar,
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TABLE 2. Comparison of the segmentation performance among various
architectures and training strategies.

even though the number of parameters in Unet16 was reduced
by a factor of four. Moreover, when the GCN layers were
added to Unet16 model, all the metric values were increased.
The similar situation was repeated when SSC were added
together. This was because the GCN layer and SSC helped
to extract improved feature maps that were advantageous for
this task.

In addition, various Aug techniques were applied. Our
proposed model, OS-Net showed the highest segmentation
performance again, even though the other models with Aug
also showed increased performance. FusionNet with GCN,
SSC, and Aug (FusionNet v2) showed comparable perfor-
mance to our proposed model, OS-Net. However, even if the
number of parameters in FusionNet v2 was two times more
than that in OS-Net, FusionNet v2 failed to show improved
performance. Thus, we concluded that increasing the depth of
the model did not simply improve the performance depending
on the task. Therefore, our proposed model, OS-Net showed
superior nucleus segmentation performance when consider-
ing the number of parameters.

So how did our proposed framework, OS-Net, produce
such superior cell nucleus segmentation results? The addition
of GCN layer and SSC, which were the main components
of OS-Net, enhanced the performance because the network
structure could be trained to extract better feature maps for
the cell nucleus segmentation task. This was verified through
the visualization results of the feature maps created after

FIGURE 4. Visualization of the feature maps in the different levels from
OS-Net and Unet16.

each module. Fig. 4 shows the visualization results of
OS-Net and the baseline model, Unet16, which was trained
with data augmentation, at each level. In OS-Net, as the
input image passed through the Down modules, the fea-
tures that could represent the nuclear region were gradually
extracted out. Then, as the extracted features were com-
bined with the Up module at the same level, the nuclear
region became clearer. Since the confidence of the nuclear
region in the final output after the sigmoid function was
very high, the nuclear region could be segmented with high
accuracy when converted to a binary image at a threshold
of 0.5. However, the results of Unet16 showed that the Down
module could not extract the effective features compared
to OS-Net, and the feature maps after Up modules exhib-
ited checkerboard patterns. Even though the final output of
Unet16 also had high pixel values in the nuclear region, it did
not give strong confidence to the whole region. In this case,
the nuclear region was likely to be under-segmented depend-
ing on the threshold value chosen for the binary image in
the final stage.

B. CROSS-MODALITY VALIDATION IN 2D AND 3D USING
FLUORESCENCE IMAGING
The cross-modality validation results of the conventional
edge-based method and various deep-learning based models
are summarized in the upper part of Table 3. First, the edge-
based method showed poor performance compared to all
deep-learning based models. Since the Sobel operator had
only 3 × 3 dimension to calculate the gradient, it would be
extremely difficult for the rule-based method to distinguish
the nuclear region, simply based on the difference among
neighboring pixels. For the deep-learning based models,
the metric calculation results showed very similar tendency
with those in Table 2. Again, OS-Net showed the best seg-
mentation performance on the cross-modality validation data,
when considering the lightness of the model.

Figure 5a is 2D RI images of the cross-modality validation
data. Figure 5b is the same images with nuclear masks by
fluorescence imaging and the nucleus segmentation results
from OS-Net and the conventional edge-based method. The
segmentation results from OS-Net trained only with RI
images (yellow contour) accurately agreed with ground truth
mask obtained from fluorescence imaging with DAPI (red
contour). However, the edge-based method (cyan contour),
falsely identified the nucleolus or organelles with higher RI
values than surrounding pixels as part of the nuclear region.
It clearly showed the limitation of the conventional rule-based
methods.
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FIGURE 5. The cell nucleus segmentation performance of OS-Net in cross-modality validation using fluorescence imaging. (a) 2D RI images in
the cross-modality validation set. (b) The corresponding ground truth (GT) nuclear regions (red contour); and segmentation by OS-Net (yellow
contour) and by conventional edge-based (EB) method (cyan contour). (c) 3D cell nucleus segmentation. RI section images with ground truth
nuclear regions (red contour) and the corresponding segmentation by OS-Net (yellow contour) with the corresponding ground truth 3D nuclear
volumes (light purple) and the corresponding 3D segmentation by OS-Net via section-wise segmentation (light yellow).

FIGURE 6. The cell nucleus segmentation performance of OS-Net in cross-laboratory validation. (a) 2D RI images measured in a different lab
oratory (cross-laboratory-validation set). (b) The corresponding ground truth nuclear regions (red contour); segmentation by OS-Net (green
contour) and edge-based method (cyan contour).

In addition, when testing the segmentation performance
of the trained OS-Net described in Fig. 1e, the RI sec-
tions of the tomogram were sequentially inserted along

the z-direction, and the nucleus segmentation results were
subsequently obtained, allowing 3D segmentation of RI
tomogram (section-wise segmentation). Fig. 5c shows the
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FIGURE 7. 4D cell nucleus segmentation by frame-wise 3D segmentation. (a) 2D RI section images of time-lapse 3D RI tomograms with segmentat
ion by OS-Net. (b) 3D rendering result of 15 sections. (c) 3D segmentation at the first frame. (d) 3D nuclear shape dynamics visualized in a middle
section (the red contour in c).

3D volume rendering results of 6 sections containing the
nuclear region. The RI sections with nuclear masks (red con-
tour) and segmentation results fromOS-Net (yellow contour),
and their 3D volume rendering results of the nuclear masks
and segmentation from OS-Net are shown respectively. Since
we performed 3D rendering only with 6 sections, which
could be confirmed with the corresponding nuclear masks
obtained with DAPI, the nuclear volume might look like a
cylinder. Furthermore, it was also feasible to calculate the
volume of the nucleus based on the voxel size. There was a
slight difference between the sizes of pink volume (ground
truth) and yellow volume (segmentation results from OS-
Net). OS-Net tended to undersegment the nucleus region
compared to ground truth slightly. (Fig. 5c) However, since
the average volume intersection ratio was 90.372% and the
absolute difference was in a scale of sub-µm, we could
conclude that 3D segmentation was successfully performed
using OS-Net.

C. CROSS-LABORATORY VALIDATION
The bottom parts of Table 3 and Fig. 6 show the results
of cross-laboratory validation using the data obtained from
a different institution to evaluate the robustness of the
OS-Net. In Fig. 6a, RI images of the same cell line had
quite different distribution from the images taken in our

laboratory (shown in Fig. 5a). Figure 6b are the 2D RI images
with the nuclear mask obtained from fluorescence imaging
with Hoechst dye (red contour), and the segmentation results
(green contour) from OS-Net and edge-based method (cyan
contour). Even though OS-Net had never seen the data from
the other institution before, the segmentation maps produced
from OS-Net were almost similar with the nuclear masks.
In addition, the average volume intersection ratio for cross-
laboratory validation set was 81.002%. This meant that the
features extracted from the spatial distribution of RI seemed
to work well. Therefore, we could confirm that OS-Net had
the highly robust performance of nucleus segmentation for
any RI image. With training data from the external institute
added to the original training set, it is expected that the OS-
Net performance of nucleus segmentation will be further
improved.

D. 4D CELL NUCLEUS SEGMENTATION
Finally, we also performed frame-wise 3D segmentation for
the time-lapse ODT data taken at an interval of 10 minutes.
Figs. 7a and 7b show the RI sections from t= 0 to t= 50 min
and their 3D rendering results of 15 sections, respectively.
Fig. 7b includes the segmented nuclear region to visualize
the changes in the nuclear shape along the z-axis. Fig. 7c
depicts the 3D volume at the first frame (t = 0 min, red
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TABLE 3. Comparison of the segmentation performance on the
cross-modality and cross-laboratory validation data.

box in Fig. 5b) and the red line corresponds to the sections
in Fig. 7a. In Fig. 7d, the boundaries of the cell and nucleus
segmentation at each time step are shown on top of the cell
image to demonstrate the changes in the cellular and nuclear
shapes over time.

As shown in Fig. 7, the cell nucleus segmentation was
successfully performed at each time step. However, noise was
observed in the RI image for a long period (i.e., Fig. 7a,
t = 50 min, the fringe noise denoted by white arrows). This
noise stemmed from the interference that could occur over
time due to the movement of the cell. When using the time-
lapse function of the ODT, the RI images were continuously
acquired using the settings chosen for the first time step,
which could have resulted in the fringe noise. Despite the
existence of noise in the images, OS-Net accurately per-
formed the nucleus segmentation as a whole. Therefore, with
its feasibility of 4D segmentation of the nucleus, OS-Net can
be applied in various studies such as real-time observation of
changes in the nuclear region.

IV. CONCLUSION
In order to segment a cell nucleus from label-free ODT
images, a deep learning framework was developed. A novel
architecture with a lightweight encoder-decoder structure and
specialized substructures, and optimized training strategies
were carefully designed to enrich the spatial information
from RI distributions. Once trained with expert-annotated
data, the proposed network presented accurate cell nucleus
segmentation in 2D, 3D, and even 4D label-free ODT images.
We rigorously validated this network via cross-modality and
cross-laboratory experiments. The results indicate that certain
patterns in the 3D spatial distribution of RI tomograms might
facilitate the identification of biological substances. The pro-
posed framework is ready for broad biomedical applications.
We also made OS-Net publicly available to facilitate its appli-
cations in other research areas.
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